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Liquid-ordered (Lo) and liquid-disordered (Ld) phase coexistence has been suggested to partition the plasma
membrane of biological cells into lateral compartments, allowing for enrichment or depletion of functionally
relevant molecules. This dynamic partitioning might be involved in fine-tuning cellular signaling fidelity
through coupling to the plasma membrane protein and lipid composition. In earlier work, giant plasma mem-
brane vesicles, obtained by chemically induced blebbing from cultured cells, were observed to reversibly phase
segregate at temperatures significantly below 37 °C. In this contribution, we compare the temperature
Liquid-ordered dependence of fluid phase segregation in HeLa and rat basophilic leukemia (RBL) cells. We find an essentially
Liquid-disordered monotonic temperature dependence of the number of phase-separated vesicles in both cell types. We also
Bleb observe a strikingly broad distribution of phase transition temperatures in both cell types. The binding of
Giant plasma membrane vesicle peripheral proteins, such as cholera toxin subunit B (CTB), as well as Annexin V, is observed to modulate phase
Phase transition transition temperatures, indicating that peripheral protein binding may be a regulator for lateral heterogeneity
Phase partitioning in vivo. The partitioning of numerous signal protein anchors and full length proteins is investigated. We find Lo
phase partitioning for several proteins assumed in the literature to be membrane raft associated, but observe
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deviations from this expectation for other proteins, including caveolin-1.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The membrane raft hypothesis assumes lateral lipid membrane
heterogeneity to critically influence cellular functions involving sig-
naling, sorting, and trafficking [1,2]. This hypothesis evolved from
findings from biochemical assays based on the detergent resistance
of membrane components at low temperature (4 °C). However, it is
becoming increasingly understood and recognized that detergents
[3,4], as well as temperature [5,6], crucially influence membrane phase
behavior (related to lateral heterogeneity). These findings have chal-
lenged the field of research on biologically relevant membrane het-
erogeneity [7,8].

Lateral segregation of plasma membrane components is often
described within the context of Lo and Ld type membrane phases
[9,10]. The physicochemical basis of Lo/Ld phase coexistence has
been investigated extensively in research based on membranes
self-assembled from defined mixtures of synthetic or purified lipids
[11-15]. It is increasingly being appreciated that non-ideal mixtures
of lipids (i.e. mixtures where lipids show non-random intermolec-
ular interactions) at temperatures even above any mixing/demixing
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transition temperatures can show heterogeneity (dynamic compo-
sitional fluctuations) below optical resolution [16,17]. Importantly,
closer to a critical mixing/demixing temperature of Lo/Ld phase co-
existence, both model membranes [18] and cell-derived membranes
[5] can show microscopically visible composition fluctuations, de-
manding their occurrence at higher temperatures with sub-micro-
scopic length scales [5,18].

While membranes obtained from synthetic lipids are helpful in
understanding fundamental aspects of membrane biophysics, only
limited inferences can be made regarding any functional aspects of
biological membranes. Undoubtedly, protein-protein interactions are
important contributors to plasma membrane heterogeneity [19,20],
and specific protein/protein and protein/lipid interactions may
define various classes of membrane microdomains. The incorporation
of complex membrane signaling machineries into self-assembled
membranes, however, remains challenging. In order to alleviate the
need for protein purification and reconstitution into model mem-
branes, giant plasma membrane vesicles (GPMVs) were recently
introduced as plasma membrane models for studying cellular
membrane phase behavior [6]. GPMVs consist of plasma membranes
not supported by cortical actin and are obtained by chemical
induction of membrane blebbing [6]. GPMVs were observed to
phase segregate in a temperature-dependent manner [6] into two
coexisting fluid membrane phases with Lo- and Ld-like character,
based on the partitioning of a set of Lo/Ld discriminating membrane
fluorophores [21]. Such vesicles have earlier been demonstrated to
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preserve the lipid composition of the plasma membrane[22], as well
as to contain numerous functionally relevant proteins [6,23]. More
recently, the protein content of GPMVs has been analyzed by
proteomics techniques. It was found that 93% of GPMV membrane
protein content is plasma membrane proteins, with the remainder
consisting of intracellular membrane proteins [24]. This finding
indicates that membrane compositions of GPMVs are similar to
cellular plasma membranes. A previous study has further shown that
a fluorescent version of the PIP, binding pleckstrin homology (PH)
domain is found to be membrane associated in GPMVs [23]. This
observation suggests that GPMVs contain a sufficient amount of PIP, to
allow membrane anchoring of PIP, binding proteins.

GPMVs have already enabled the re-investigation of Lo phase par-
titioning of several membrane associated proteins [6,23] and the
characterization of the partitioning of lipid dyes among Lo-like and
Ld-like phases.

The present contribution is organized as follows. We first inves-
tigate the temperature dependence of the phase behavior of GPMVs
obtained from both HeLa and Rat basophilic leukemia (RBL-2H3) cells.
We also investigate the effects of peripherally binding proteins on
membrane heterogeneity and observe that peripheral protein bind-
ing can significantly shift the phase behavior. We proceed with an
investigation of the phase partitioning preference of several signal-
ing proteins, their membrane anchors, and mutants of these anchors.
We find significant Lo phase partitioning of Lck anchors, as well as
of the transmembrane protein hemagglutinin, consistent with pre-
dictions from the membrane raft hypothesis. Conversely, we observe
preferential Ld phase partitioning of the proteins caveolin, H-ras, and
Fyn.

2. Materials and methods
2.1. Cells

Hela cells were obtained from G. Kao (University of Pennsylvania).
Rat basophilic leukemia (RBL-2H3) cells, a mast cell model, were
obtained from the Baird lab (Cornell University). RBL cells are an
extensively studied cell line used to investigate lipid domain involve-
ment in receptor signaling [25,26].

2.2. Blebbing procedures

GPMVs were obtained as previously described [6], with modifica-
tions mentioned below. Briefly, all cell lines were grown as monolayer
cultures in a 5% CO, atmosphere at 37 °C. RBL cells were cultured in
minimum essential medium containing 10% fetal bovine serum (FBS).
Hela cells were grown in Dulbecco's modified Eagle medium with
10% FBS. Approximately 3-4 days after passage, cells grown to 80%
confluency were washed with GPMV (“blebbing”) buffer composed
of 2 mM CaCl,, 10 mM Hepes, and 0.15 M NaCl at pH 7.4, to which
formaldehyde (HCHO) and dithiothreitol (DTT) at final concentra-
tions of 25 mM and 2 mM, respectively, were added prior to wash-
ing. After three consecutive washing steps, the cell monolayer was
covered with a thin layer of GPMV buffer (2 mL per culture flask with
an area of 25 cm? for non-transfected cells), and 0.7 mL per well of
a six-well plate (area~7 cm?) in case of transfected cells, and shaken
at 60 RPM and 37 °C for 1 h (RBL cells) and 2.5 h (Hela cells), re-
spectively. Following incubation, GPMVs that had separated from the
cell monolayer were gently decanted into a 15 mL conical tube and
stored at 4 °C to settle. After 30 min, 20% of the sample was trans-
ferred from the bottom of the conical tube into a 1 mL Eppendorf tube,
of which 50 pL aliquots were stained at room temperature (2241 °C)
and imaged as described below. The GPMV yield was ~ 200-500
vesicles per 5 pL sample used for microscopy. An alternative protocol
substituting 2 mM N-ethylmaleimide for HCHO and DTT was used to
confirm that chemical agents did not affect the results obtained [6].

2.3. Commercial fluorescent proteins and lipids

AlexaFluor488-Cholera Toxin Subunit B (CTB, Invitrogen, Carlsbad,
CA) was added in amounts of 0.5 pL from a stock solution (0.2 mg/mL
in phosphate buffered saline (PBS)) per 50 L GPMV dispersion.
Cholera toxin binds the ganglioside GM1, a lipid that has been
observed to target Lo membrane phases of GPMVs [6].

AlexaFluor555-Annexin V Conjugate (A35108, Invitrogen) was
added to GPMVs after blebbing. Annexin-bound phosphatidylserine
(PS) has previously been shown to be Ld preferring [6]. 0.50 pL of the
fluorophore stock solution (100 assays per 500 L) was used per 40 pL
GPMV dispersion.

1,2- dipalmitoyl-sn-glycero-3-phospho-ethanol-amine-x-Texas
red (TR, Invitrogen) was added from a stock solution (200 pg/mL
dye/methanol). 0.50 pL of this solution was used per 40-50 uL GPMV
aliquot. In a small number of experiments, instead of a methanol
solution, we used a previously developed bovine serum albumin (BSA)
shuttling approach[27] to label GPMVs, and we did not find measur-
able differences in the temperature-dependent phase behavior com-
paring these two approaches.

In the present contribution we use TR to identify Ld phases. This
probe choice is based on the fact that, in model membrane research,
TR has been shown to preferentially partition into Ld phases, as
opposed to Lo phases [28,29]. Furthermore, the Texas red emission
spectrum leads to reduced overlap with green dye emission spectra
compared to rhodamine dyes [30] that we have previously used as Ld
markers [6]. GPMVs, however, represent a significantly more complex
lipid environment compared to ternary model membrane mixtures,
and fluorophore membrane phase partitioning preference depends
not only on phase state but also on particular thermodynamic prop-
erties of coexisting phases [31,32]. We therefore compared the par-
titioning of TR in HeLa and RBL cell blebs to the partitioning of
molecules that previously were observed to display unique Ld phase
preference in RBL cell blebs, such as the GFP labeled acyl chain anchor
palmitoyl-myristoyl (PM-GFP) [6], as well as molecules with Lo phase
preference, such as GPI anchors [23] and CTB [6]. This comparison
(data not shown) confirmed exclusive Ld phase partioning of TR in
HeLa and RBL cell blebs.

2.4. Proteins

FYN-eGFP, CD59-eGFP, the H-ras anchor H-ras-eGFP (Clontech)
consisting of the 20 amino acid farnesylation signal of Ha-ras, the
glycosyl phosphatidyl inositol anchored eGFP construct, GPI-eGFP,
and a hemagglutinin eGFP fusion protein, HA-eGFP, were obtained
from A. Kenworthy (Vanderbilt University). H-ras-eGFP was obtained
from M. Philips (New York University). N- and C-terminally eGFP
tagged caveolin-1 (Cav-eGFP and eGFP-Cav, respectively) were from
A. Helenius (ETH Zurich). Lck and Fyn eGFP anchor constructs (in a
pCMV5 vector) were obtained from L.G. Berthiaume (University of
Alberta). These constructs consisted of the first ten N-terminal amino
acids of the wild type (wt) protein plus a seven-amino acid linker
corresponding to amino acids TKLTEER [33] (see Tables 2 and 3).

2.5. Mutagenesis

Fyn and Lck anchor constructs in pCMV5 vectors were observed
to show lower expression levels compared to similar constructs
expressed by means of a pEGFP vector. To obtain higher expression
levels, the Fyn anchor sequence was cloned into the pEGFP (Clontech)
vector. The resulting plasmid was used as a template for the con-
struction of the Fyn and Lck mutants. Mutagenesis was performed
by means of a standard protocol using the QuikChange Site Directed
Mutagenesis kit (Stratagene) for primers of length smaller than 45
bases. For mutations needing longer primers, a modified protocol
including separate primer extension reactions for forward and reverse
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primers was performed [34]. All constructs described in the present
work contained the eGFP A206K mutation that reduces the
tendency of GFP to dimerize at high concentrations [35]. Compar-
ison of the same anchor constructs with and without the A206K
mutations did not reveal measurable partitioning differences (data
not shown).

HelLa cells were transiently transfected with fusion protein plas-
mids using Lipofectamine (Invitrogen), according to the supplier's
instructions. RBL cells were transfected by a modified procedure in-
cluding incubation for 1 hwith 0.1 pL phorbol 12,13-dibutyrate (Sigma
Aldrich) as described [36].

2.6. Imaging

GPMVs were imaged immediately after preparation. Room
temperature measurements were conducted on standard microscope
slides with coverslips. 5 pL of sample was enclosed within a border of
vacuum grease totaling approximately 2.5 cm? in area. Fluorescence
imaging at additional temperatures was performed by encasing 5 pL of
sample between two circular cover slips in a vacuum grease “cage”
(ring) enclosing an area of roughly 2.0 cm?. The two coverslips were
then sealed with clear nail polish (Maybelline: New York Express
Finish Advanced Wear #10). A stainless steel disk was then super-
glued to the back of the sample for convenient mounting on the
microscope stage via a suspended magnetic rod. Room temperature
samples were imaged through a water immersion objective (60x, 1.2
NA, Olympus). Temperature-controlled samples were submerged via
a magnetic rod into a small water bath (the size of a small Petri dish)
that was mounted onto the microscope objective (60x, 0.9NA, Olym-
pus). Both the water bath and the objective were temperature-
regulated by means of tubing that was thermostated via a circulating,
temperature-controlled water bath (temperature fluctuations were
below 4 0.2 °C). Temperatures were measured near the sample with a
thermocouple (type K, Fisher Scientific). Alternatively to the method
described above, temperature was regulated using a Peltier device
regulated by a commercial temperature controller (temperature fluc-
tuations below + 0.1 °C. Model: PTC 5 K-CH, Wavelength Electronics,
Bozeman, MT). GPMVs were imaged using a confocal laser scanning
imaging system (IX81, Fluoview 1000, Olympus, Bethlehem, PA).
Fluorophores were excited at wavelengths of N =488 nm and
N=>543 nm.

The fraction of phase-separated GPMVs was determined at each
temperature by counting the number of phase-separated GPMVs
versus homogenous GPMVs in single fields of view (FoV). Numerous
FoVs were observed for each temperature measurement and aver-
aged. Typically, 50 vesicles were imaged and counted to determine
both the temperature dependence of phase coexistence and phase
partitioning preference of proteins. For quantitative analysis of fluo-
rescence intensity ratios, a smaller subset of high quality images (e.g.,
those with low background intensity, large vesicles, low noise levels)
were selected. Protein partitioning was always determined at room
temperature (2241 °C). For each protein, partitioning data were
obtained from at least three independent GPMV preparations from
different cell culture flasks.

2.7. Quantitative image analysis to determine protein partitioning

Fluorescence intensities in brighter and darker regions of phase-
separated, randomly chosen GPMVs were determined by averaging
the fluorescence intensities in a square-shaped region of interest
(ROI) on four randomly chosen positions in each brighter and each
darker membrane phase. Vesicles which showed no detectable phase
coexistence at optical resolution were excluded from analysis. Back-
ground levels, obtained from averaging fluorescence intensities mea-
sured using the software Image] (NIH, Bethesda, MD) in eight ROIs
near the GPMV circumference were subtracted. For every given

vesicle, all ROIs had the same size of ~1 um?. The phase state was
assigned by the partitioning of TR. The degree of apparent Lo phase
partitioning was defined as the base-10 logarithm of the Lo phase
versus Ld phase fluorescence intensity ratio. We assigned a protein to
be Lo phase partitioning if this value exceeded 0.15, and Ld phase
partitioning for a value below that of —0.15. These boundaries cor-
respond to a fluorescence intensity ratio of ~1.4. This fluorescence
intensity ratio refers roughly to the minimum intensity difference
that could be detected by visually inspecting the protein channel of
our images. Non-preferential protein partitioning was defined as a
value in between and including these two boundaries. We emphasize
that values defined as such do not necessarily directly correspond
to thermodynamic partition coefficients, due to reasons inherent in
the fluorescence approach used here [21]. Quantitative data were
summarized by means of histograms [37], of which we show three
representative examples in Figs. 2-4. Protein anchors were assigned a
partitioning preference (Ld, Lo, or NP) if more than 1/3 of the counted
vesicles showed the respective partitioning preference as quantita-
tively defined above.

3. Results
3.1. Temperature dependence of fluid phase coexistence

Giant plasma membrane vesicles from HeLa and RBL cells were
prepared from cells grown in adhesion culture and induced to bleb as
described in the Materials and methods section. We first investigated
the effect of temperature on the fraction of phase-separated vesicles.
Fig. 1 indicates that GPMVs labeled with TR of HeLa (Fig. 1a) and RBL
cells (Fig. 1b) phase segregate in a temperature-dependent manner.
Similar temperature dependence of the fraction of phase-separated
vesicles is observed both for HelLa and RBL cells. Single GPMVs
displayed a sharp phase transition (i.e., with a temperature spread
smaller than our measurement uncertainty), and heating/cooling
cycles indicate absence of measurable hysteresis effects under the
conditions of our experiments (temperature accuracy 4+ 0.2 °C, scan-
ning speed~1 °C/min). Also deduced from Fig. 1 is a large range of
phase transition temperatures. We observe an essentially monotonic
temperature dependence (consistent with results presented in ref.
[5]) of the fraction of phase-separated vesicles. GPMVs phase-
separated over a temperature range of roughly 10-30 °C. Because
the phase behavior of Hela and RBL cell GPMVs was sensitively
dependent on cellular growth conditions (confluency, time after last
medium exchange), care had to be taken to perform all blebbing
experiments under standardized conditions (see Materials and
methods section).

In order to examine whether the large range of mixing-demixing
transition temperatures was due to the fact the cells shed GPMVs at
varying times after initiation of the blebbing process, we harvested
GPMVs from cell culture monolayers in half-hour intervals. Factors
which would contribute to such a time-dependence include potential
time-dependent plasma membrane compositional changes. After
each time interval, the GPMV-containing blebbing buffer was
collected and replaced by fresh blebbing buffer. GPMVs were
examined immediately for their temperature-dependent mixing-
demixing properties. No dependence (beyond sample-to-sample
variations, see Fig. 1) of blebbing time on phase behavior could be
identified with this experiment (data not shown).

We further observed GPMV phase behavior to be influenced by
peripheral protein binding. In particular, cholera toxin subunit B
(CTB), which binds to the ganglioside GM1, and Annexin V, which
binds to scrambled (i.e. leaflet randomized) phosphatidylserine, led to
an increase in the fraction of phase-separated vesicles, compared to
GPMVs that were labeled with TR only. This influence is observed
when comparing vesicles labeled with TR in combination with either
Annexin V or CTB to GPMVs labeled with TR only (Fig. 1a). This finding
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Fig. 1. Temperature dependence of phase coexistence in HeLa and RBL cell bleb mem-
branes. (a) HeLa cell blebs were labeled either with the lipid fluorophore TR, or with
both TR and either CTB or Annexin V. In all cases, the fraction of phase-separated
membrane vesicles is observed to depend essentially monotonically on temperature,
with a broad spread of transition temperatures. Both the addition of CTB and Annexin V
raise transition temperatures relative to those GPMVs that were labeled with TR only.
The effect of Annexin V on phase behavior appears to be slightly larger at low
temperatures compared to CTB, although the error bars overlap. (b) RBL cell blebs were
labeled with TR. Similar temperature-dependent phase behavior is found compared to
HeLa cell blebs labeled with TR. In both figures, error bars are standard deviations
resulting from three measurements using different bleb preparations.

confirms earlier results in model membranes, where cross-linking of
GM1 by CTB raised phase transition temperatures|38].

The effects of peripherally binding proteins on membrane phase
behavior were similar in HeLa cell and in RBL cell GPMVs (not shown).

3.2. Protein partitioning in GPMVs

In previous contributions, the phase partitioning of several
membrane proteins was examined in RBL cell GPMVs [6,23]. Here
we describe the partitioning of additional proteins, including trans-
membrane proteins, as well as outer and inner leaflet acyl chain
anchored proteins, and short peptide chains with eGFP anchors in
Hela cells.

3.2.1. Partitioning of wild type protein anchors

In order to focus on the contribution of the membrane anchor
(rather than protein/protein interactions) of signaling proteins
such as Src-like protein tyrosine kinases [33], we investigated short
N-terminal sequences of signaling proteins containing myristoylation
and palmitoylation sites that were C-terminally labeled with eGFP.

It has already been observed that anchors with a single palmitoylation
site and a single myristoyl chain (PM-eGFP and Lyn-eGFP) show
preference for Ld phases [6]. Below we will test the hypothesis
that anchors with an additional palmitoylation site increase the Lo
phase partitioning preference in phase-separated GPMVs. We further
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Fig. 2. Variable partitioning of wild type Lck anchor eGFP construct. (a)-(c): Repre-
sentative images of vesicles displaying preferential Ld phase partitioning (a), non-
preferential partitioning (b), and preferentially Lo ordered phase partitioning (c) wt Lck
anchors (green channel, left) in HeLa cell giant plasma membrane vesicles labeled with
the lipid dye TR. Scale bars: 2 pm. (d) Histogram of fluorescence intensity ratios of Lo
phase versus Ld phase fluorescence, comparting protein and lipid dye. Fluorescence
intensity ratios are shown as base-10 logarithmic values. The broad histogram reflects
the variable partitioning behavior shown in the fluorescence images.
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examine to what extent mutations in the amino acid sequence of
protein anchors affect partitioning.

Previous reports based on fluorescence quenching and detergent
resistance assays applied to ternary lipid mixtures of DPPC, DOPC,
and cholesterol had reported Lo phase and detergent resistant
membrane (DRM) partitioning preference of membrane anchors
similar to those of the Src-like protein tyrosine kinases Lck and Fyn
[39]. We therefore examined the partitioning of their anchor
sequences in GPMVs. Both of these membrane anchors contain one
myristoyl and typically two palmitoyl groups that are post-
translationally attached, resulting in plasma membrane association
[33].

Protein partitioning was quantified by measuring the fluorescence
intensity ratios in Lo versus Ld phases, as described in the methods
section. Table 1 summarizes the phase partitioning of the Lck wild
type (wt) anchor, the sequence of which is shown in Table 2. As shown
in the fluorescence images (Fig. 2a-c) and the histogram comparing
fluorescence intensity ratio distributions of wt Lck and TR (Fig. 2d),
this protein anchor displayed variable partitioning ranging from Ld
(Fig. 2a) over non-preferential (Fig. 2b) to Lo preference (Fig. 2c). All
images in this manuscript show fluorescence from the protein chimera
in the left panel, and TR fluorescence in the right panel. Variable phase
partitioning was a common observation that likely indicates compo-
sitional differences among GPMVs obtained from the same cell culture
flask, a hypothesis which is in line with the dispersity of measured
phase transition temperatures (Fig. 1). Our observations suggest that
cells can effectively regulate the phase preference of signaling
molecules by carefully tuning plasma membrane compositions.
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Fig. 3. Partitioning of wt Fyn anchor eGFP construct. (a) Representative fluorescence
images comparing protein (green, left) and lipid dye (red, right) fluorescence in a
phase-separated HeLa cell GPMV. Scale bars, 2 pm. (b) Fluorescence intensity ratio
distribution for protein and lipid dye demonstrates primarily disordered phase parti-
tioning of the wt Fyn protein anchor. Scale bars, 2 pm.
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Fig. 4. Partitioning of GPI anchor eGFP construct. (a) Representative fluorescence images
comparing protein (green, left) and lipid dye (red, right) fluorescence in a phase-
separated HeLa cell GPMV. Scale bars, 2 pm. (b) Fluorescence intensity ratio distribution
for protein and lipid dye demonstrates primarily Lo phase partitioning of the GPI anchor.

The wt Fyn anchor (see Table 3 for the sequence) was predom-
inantly Ld phase partitioning. Typical fluorescence images of wt Fyn
are shown in Fig. 3a, and the associated fluorescence intensity
histogram is shown in Fig. 3b. This difference between phase
partitioning preference of Lck and Fyn wt anchors might contribute
to the reported differences in their trafficking and signaling behavior
[40], although protein-protein interactions have been shown to be
critically important as well [41].

In addition to Src-like kinase anchors, we investigated an eGFP
labeled H-ras anchor construct. Ras GTPases are proteins that act as
plasma membrane localized molecular switches that regulate several
signal transduction pathways [42]. The acyl anchor of H-ras consists of
two palmitoyl chains and one farnesyl chain. The truncated anchor
sequence of H-ras was found to associate with cholesterol sensitive
microdomains [42] and to co-localize with GDP-loaded, but not with
GTP-loaded (i.e., activated), H-ras.

In Hela cell GPMVs, we observed strong disordered phase
targeting of the H-ras anchor (Table 1) and the fluorescence intensity

Table 1
Membrane phase partitioning of signal protein anchors and of several full length
proteins. Partitioning was analyzed as described in the Materials and methods section.

Anchor construct/protein Ld Lo NP
Lck anchor 35% 30% 35%
Fyn anchor >90%

H-ras anchor >90%

GPI anchor >90%

H-ras (full length) >90%

CD-59 >90%

Caveolin-1 >90%

Hemagglutinin 26% 58% 16%
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Table 2

Lck protein anchor variants and phase partitioning preferences. Assignment of phase partitioning followed the same principles as explained in the Materials and methods section.
Underlined and bold letters in amino acid sequence indicate locations of mutations in the wt anchor.

Anchor constructs Amino acid sequence Charge Ld Lo NP
Lck wild type (M) GCGCSSHPEDTKLTEER -2 35% 30% 35%
Lck neutral (M) GCGCSSHPQNTKLTEER 0 21% 12% 67%
Lek all neutral (M) GCGCSSHPQNTQLTQQQ 0 29% 29% 42%
Lck(—2) (M) GCGCSSHPEDTQLTQQQ —2 50% 23% 27%
Lck(+2) (M) GCGCSSHPKKTKLTEER +2 81% 3% 16%
LckG4V (M) GCVCSSHPEDTKLTEER =2 67% 11% 22%
LckG4VHSN (M) GCVCSSNPEDTKLTEER —2 57% 0% 43%
LckG4VHSR (M) GCVCSSRPEDTKLTEER —1 41% 9% 50%
LckH8N (M) GCGCSSNPEDTKLTEER =2 14% 54% 32%
LckH8R (M) GCGCSSRPEDTKLTEER —1 8% 50% 42%
Lck CGGC (M) GCGGCSSHPEDTKLTEER =7 = = =

ratio histogram (see supplementary information, SI) indicates unique
disordered phase preference. This observation departs from the
hypothesis that H-ras-eGFP (also called tH-ras) targets cholesterol-
enriched membrane raft domains with liquid-ordered nature. The
eGFP labeled version of the full length H-ras protein also was not
associated with Lo phases (Table 1 and SI).

In addition to inner leaflet bound signal protein anchors, we
studied outer leaflet associated (GPI-anchored) constructs. As the
fluorescence images in Fig. 4a and the histogram of fluorescence
intensity ratio distribution (Fig. 4b) show, the GPI-anchored eGFP
construct was observed to partition oppositely to Ld phase markers in
Hela cell GPMVs. This Lo phase preference of the GPI anchor in HeLa
cells is in accordance with the phase partitioning of the GPI-anchored
protein Thy1 investigated in RBL cell GPMVs [6] and the partitioning
of GFP tagged GPI anchors in RBL cell GPMVs [23]. Having now shown
examples of fluorescence images and histograms of strong ordered
phase (GPI anchor), disordered phase (wt Fyn), and non-preferential/
mixed partitioning (wt Lck) molecules, we confine ourselves to
summarizing our data in Tables 1-3 and refer the reader to the SI for
fluorescence intensity ratio histograms of additional membrane
proteins to be discussed in the following.

3.2.2. Partitioning of full length proteins

In addition to GPI anchors, we examined the GPI-anchored protein
CD59. This molecule is a small, globular, highly glycosylated, outer
leaflet associated membrane protein found in almost all tissues and
expressed in all circulating cells. The most investigated role of CD59 is
in complement regulation, but a variety of additional functions have
been proposed [43]. Among these, cross-linking of CD59 by monoclo-
nal antibodies was observed to initiate tyrosine kinase activation and
associated downstream signaling in T-cells [43]. CD59 is classified as a
raft-associating protein [44]. The eGFP labeled form of this outer leaflet
anchored protein exhibits Lo phase partitioning preference, consistent
with the partitioning of GPI anchors (Table 1 and SI).

Table 3

Fyn protein anchor variants and phase partitioning preferences. Assignment of phase
partitioning followed the same principles as explained in the Materials and methods
section. Bold and underlined letters in sequence indicate positions of mutations of the
wild type anchor.

Anchor constructs Amino acid sequence Charge Phase preference
Fyn wild type (M) GCVQCKDKEATKLTEER 0 > 90% Ld
Fyn neutral linker (M) GCVQCKDKEATQLTQQQ 0 >90% Ld
Fyn neutral (M) GCVQCQNQQATKLTEER 0 >90% Ld
Fyn(—2) (M) GCVQCKDEEATKLTEER =2 >90% Ld
Fyn(—1) (M) GCVQCKDKEATQLTEER =il >90% Ld
Fyn(+4) (M) GCVQCKKKKATKLTEER +4 >90% Ld
Fyn(—4) (M) GCVQCEDEEATKLTEER —4 Cytosolic
Fyn all neutral (M) GCVQCQNQQATKQLTQQQ 0 Cytosolic
LckFyn (M) GCVCKDKEATKLTEER 0 Cytosolic
LckFynV4G (M) GCGCKDKEATKLTEER 0 Cytosolic

We also investigated the phase partitioning of the trans-membrane
raft protein hemagglutinin (HA, from the influenza virus) in eGFP labeled
form. Previous reports have suggested that membrane raft domains are
selectively incorporated into the influenza virus envelope [45], suggest-
ing that HA itself might be raft and liquid-ordered phase preferring[44].
HA-eGFP shows variable phase partitioning in HeLa cell GPMVs,
including Ld phase partitioning, non-preferential partitioning, and a
majority of Lo phase partitioning GPMVs (Table 1 and SI). This variable
partitioning again underscores the hypothesis of compositional differ-
ences among different vesicles and suggests an influence of membrane
lipid composition on lateral targeting of membrane proteins.

Finally, we tested eGFP labeled versions of caveolin-1. Caveolin-1
is a major constituent of caveolae, which are invaginations of the
plasma membrane enriched in cholesterol and sphingomyelins [46].
Caveolins are multiply palmitoylated at the C-terminal domain and
contain both a putatively membrane-inserting hair-pin and a
scaffolding domain that improves membrane binding through basic
and bulky hydrophobic residues [46]. Because of the specific caveolae
lipid composition, one might expect caveolin to be ordered phase
preferring. Caveolin has therefore been described to stabilize ordered
membrane domains[47] but has also been proposed to remain
excluded from liquid-ordered domains [48].

We observed that caveolin-1 partitions out of Lo-like phases in HeLa
cell GPMVs (Table 1 and SI). This observation likely indicates that the
concept of caveolae as a liquid-ordered phase contained in a coexisting
Ld membrane phase is oversimplified. It seems to be in accordance,
however, with studies that have described newly synthesized caveolin
in the Golgi apparatus not to be associated with detergent resistant
membranes [49] and with a model membrane study that described the
caveolin scaffolding domain of caveolin-1 to be Ld phase preferring [50].

3.2.3. Partitioning of Lck anchor mutants

In order to characterize molecular determinants that govern the
partitioning of Src-like protein tyrosine kinase membrane anchors
between fluid domains in GPMVs, we investigated the partitioning of
GFP-fused truncated versions of these proteins. It is known that the
plasma membrane targeting signals of these proteins consist of a
myristoyl group and a double palmitate group [33], rather than a
polybasic domain. We therefore hypothesized that the plasma
membrane targeting of these proteins is not significantly affected by
any potential reduction in phosphatidylserine asymmetry that may
occur during blebbing [6].

We examined anchor sequences of human Lck and compared the
partitioning behavior to numerous mutants. As described above, the
wt anchor displayed variable partitioning in phase-separated GPMVs.
We note that this observation contrasts with the strong Ld phase
partitioning behavior of PM-GFP, a peptide sequence membrane
anchored via a myristoyl/palmitoyl anchor [6].

We first examined to what extent the net charge of the anchor and
the distribution of charged residues affect phase partitioning. The iso-
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steric mutation E1I0QD11N results in zero net charge and leads to
increased non-preferential phase partitioning (Table 2 and SI),
whereas exchanging all charged residues in the anchor sequence by
polar neutral ones (Lck-all neutral, Table 2 and SI), leads to phase
partitioning more similar to the wild type (wt) anchor. Eliminating
charged residues near the C-terminus of the anchor sequences only,
while keeping constant the net charge of the construct (Lck -2, Table 2
and SI), also leads to similar partitioning compared to the wt anchor.
The mutation E1I0KD11K (Lck + 2) results in a positive net charge and
causes increased Ld phase partitioning. We conclude that altering the
net charge and charge distribution particularly close to the acyl chain
anchor residues can affect phase partitioning. We also emphasize the
fact that changes in anchor sequences affect the partitioning of our
constructs, despite the presence of a large GFP label that might be
expected to influence the observed partitioning behavior [51].

We next examined how amino acids separating the two cysteines
of the anchor sequence affect partitioning. Based on the partitioning
behavior of the Lck wild type and Fyn wild type anchors, we
hypothesized that both the spacing of the cysteines, as well as the
residue size of the spacer amino acids, might affect partitioning.
Interestingly, exchanging a single amino acid (G4V) that separates the
two cysteines of the palmitate anchor changes the partitioning
preference to Ld. We found that the double mutation G4VH8N,
resulting in a sequence found in mouse Lck, switched the human wt
Lck anchor to an Ld phase preferring/non-preferential construct, with
no observable Lo phase partitioning. Because of the notable
partitioning differences between human and mouse Lck anchors, it
would be interesting to examine if these Lck anchors lead to
functional differences in signaling pathways.

In order to further characterize the observed difference
in partitioning behavior comparing human and mouse Lck anchors,
we investigated to what extent mutation in position 8 affects
partitioning. Comparing G4VH8N to G4VH8R does not reveal a
significant change in partitioning. However, the single site mutations
H8N and H8R both lead to increased Lo phase partitioning (Table 2
and SI). This observation allows for the hypothesis that variable
protonation states of the histidine residue at position 8 in human Lck
might be a way to modulate phase partitioning.

Strikingly, the sequence (M)GCGGC results in loss of membrane
association, indicated by absence of detectable membrane fluores-
cence and a diffuse fluorescence signal from the GPMV interior in the
green channel (not shown). This observation could either indicate that
the configuration CGGC leads to orientations of palmitates unsuitable
for efficient membrane insertion, or that the sequence CGGC interferes
with N-myristoylation of the anchor by N-myristoyltransferase (NMT).
Because of the reduction in membrane binding affinity, impaired
myristoylation would also lead in loss of palmitoylation, as palmitoyl
acyltransferases are typically membrane associated [52]. A consensus
sequence for NMT substrates is (M)-G-X-X-X-S/T, although there are
several exceptions, including the Fyn anchor (M)-G-C-V-Q-C-K [53].
More generally, NMTs show a preference for serines at position 6 and
basic residues at positions 7 and 8 of the peptide substrate [53]. We note
that palmitoylation by palmitoyl acyltransferases (PATs) might also be
sequence specific, although no consensus sequence has been identified
[54]. Further interpretation of our results will therefore likely require
evaluation of palmitoylation degrees of our anchor constructs; such
an analysis was beyond the scope of the present study.

To summarize our findings, it is evident that mutations affecting
amino acids both in the immediate vicinity of the palmitate anchoring
cysteines, as well as amino acids further separated from the palmitate
groups, can have effects on membrane domain partitioning.

3.2.4. Partitioning of Fyn anchor mutants

Fyn anchor sequences, summarized in Table 3 (see SI for
fluorescence intensity ratio histograms), ubiquitously showed Ld
phase partitioning, independent of net charge and charge distribution,

as shown for the wt protein in Fig. 3. An exception was a construct with
significant negative charge (—4), which was observed not to be
membrane associated. This observation can likely be explained by
electrostatic interactions reminiscent of the myristoyl/electrostatic-
switch [53] of the peripherally membrane associating protein
MARCKS. After phosphorylation increases its negative net charge,
this protein unbinds from the inner plasma membrane leaflet. Loss of
membrane association for the all neutral Fyn construct displayed in
Table 3 is likely a consequence of loss in myristoylation since, as
mentioned above, NMTs prefer substrates with basic residues in
positions 7 and 8 [53]. More difficult to explain is the loss of membrane
association for Fyn palmitate spacer sequences (“LckFyn” and
“LckFynV4G”) shortened by one amino acid to resemble the mouse
or human Lck, respectively (Table 3). As these palmitate spacers
generally show sufficient membrane association for the constructs
shown in Table 2, we speculate that the “LckFyn” and “LckFynV4G” of
Table 3 suffer from a myristoylation defect that results from a loss of
NMT recognition of the Fyn myristoylation sequence.

To summarize, GPMVs provide an alternative system for the
investigation of plasma membrane partitioning. The observations
presented above indicate that the amino acid sequence in the N-
terminal anchor region of Src-like protein tyrosine kinases sensi-
tively influences both membrane targeting and membrane domain
partitioning. Our present observations do not yet clarify whether Ld
versus Lo partitioning is determined primarily through modulated
membrane interaction of the anchor peptide sequence through
variations in net charge, charge distribution, or steric considerations,
or whether such changes primarily affect the degree of palmitoyla-
tion, thereby leading to a secondary effect contributing to domain
partitioning. This question can be answered by measurements of
palmitoylation status. We also note that the partitioning of Lck
and Fyn constructs was comparable in HeLa and in RBL cells (not
shown).

4. Discussion

Our measurements of GPMV phase behavior temperature depen-
dence suggest that plasma membranes are not macroscopically (i.e.,
on a scale resolvable by the optical microscope) phase-separated
at physiological temperatures, consistent with results shown in refs
[5,6]. There are two scenarios that have been suggested to explain
the existence of membrane rafts in the framework of equilibrium
thermodynamics.

One of these is the microemulsion model [55] that has been
theoretically examined by Frolov et al. [56]. This model assumes that
membrane rafts consist of domains with a sharp phase boundary (the
so-called “strong segregation limit”), where the line energy associated
with the steep change in membrane properties in the direction
orthogonally to this boundary (i.e., the line tension [14,15,57]) could
be reduced by line-actants [55]. These line-actants would lead to an
“entropic trapping” of small domains [56], below the critical
temperature of phase coexistence, T.. A critical emulsification
temperature exists in this case (below T.) that is determined by the
balance between energetic line tension penalty and a term stemming
from the increase in entropy through emulsification [56].

A second model considers that plasma membrane compositions are
poised to be near a critical point of phase coexistence [58,59]. In that case,
macroscopic phase coexistence disappears at the critical temperature.
Above T, compositional fluctuations (transient clusters) within a non-
ideal mixture [60] lead to spatial regions that are enriched in components
with preferential interactions [6]. Such correlated concentration fluctua-
tions [61] could be pivotal in dynamically modulating the encounter
probability of plasma membrane associated signaling molecules [10],
thereby influencing the fidelity of membrane associated signaling
pathways [6]. Importantly, critical composition fluctuations have been
recently observed and thoroughly characterized in GPMVs of RBL cells [5].
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Our observation that Annexin V binding influences lateral mem-
brane heterogeneity confirms earlier suggestions for members of the
Annexin family of membrane binding proteins to function as regu-
lators of cellular membrane heterogeneity [62,63]. It is known that
the calcium-mediated binding of the Annexin V monomer involves
several membrane lipid binding sites [64], which leads to lipid cross-
linking that is likely to affect phase behavior [38]. Annexin All is also
known to cluster phosphatidylserines [65] and PIP, [66] and has fur-
ther been suggested to be involved in domain regulation [65]. Anne-
xins may therefore contribute to linking calcium signaling and
functionally relevant dynamic lateral membrane organization [63].
Effects on phase transition temperatures by cross-linking lipids
through protein binding have previously been demonstrated in self-
assembled mixed model membranes [38,67].

In addition to these effects of peripherally binding proteins on
membrane heterogeneity, we have recently demonstrated that the
cholesterol content of GPMVs sensitively affects the temperature-
dependent phase behavior [68].

Findings in GPMVs may not always reflect the behavior of proteins
in native cells. The limitations of GPMVs as a model membrane system
have previously been discussed [6]. In particular, it has been found
that phosphatidylserine, a negatively charged lipid normally concen-
trated on the inner plasma membrane leaflet, is likely to flip during
bleb formation. To what extent flipping occurs, and if the observed
degree of PS externalization influences protein partitioning in GPMVs,
will be an important aspect of future studies.

5. Conclusions

We have investigated the temperature-dependent phase behavior
of giant plasma membrane vesicles. The phase behavior of these
model membranes suggests that plasma membranes do not show a
tendency to macroscopically phase-separate at physiological temper-
ature in the thermodynamic limit. We have shown that peripheral
protein binding affects transition temperatures in GPMVs.

We observed that the proteins CD-59 and hemagglutinin, which
are believed to be raft associated, showed noticeable Lo phase par-
titioning. Furthermore, Lck anchors showed increased Lo phase pre-
ference compared to Fyn anchors, and we found membrane phase
partitioning preference differences in human and mouse Lck anchors.
Surprisingly, the protein caveolin, in GFP labeled form, was not found
to be associated with Lo phases.
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